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ABSTRACT

In this puaper, we develop a set of conditions under which a sequence
is uniquely specified by the phase or samples of the phase of its
& Fourier transform, and a similar set of conditions under which a sequence
is uniquely specified by the magnitude of its Fourier transform. These
conditions are distinctly different from the maximum or minimum phase
conditions, and are applicable to both one-dimensional and multi-dimensional
sequences. Under the specified conditions, we also develop several
algorithms which may be used to reconstruct a sequence from its phase or
magnitude. As a potential application area, the results of this paper

are applied to the blind deconvolution problem of digital images blurred

by a symmetric point spread function.
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L INTRODUCTION

For both continuous-time and discrete-time signa.s, the magnitude
and phase of the Fourier transform are, in general, independent functions,
i.e., the signal cannot be recovered from knowledge of either alone.

Under certain conditions, however, relationships exist between these
components. For example, when the signal is a minimum phase or maximum
phase signal both the log magnitude and phase can be obtained from the

other through the Hilbert transform. This relationship has been exploited
in a variety of ways in many fields including network theory, communications
and signal processing (1,2,3).

In this paper we develop a set of conditions under which a discrete-
time sequence is completely specified to within a scale factor by the
phase of its Fourier transform, without the restriction of minimum or
maximum phase, and propose several algorithms for implementing the
reconstruction of a signal from the phase of its Fourier transform. In
Section II we consider the case in which the phase is specified at all
frequencies, and in Section TII the case where the phase is specified at
a discrete set of frequencies. Algorithms for implementing the reconstruction
are developed in Section V. In Section 1V, we develop a different set
of conditions, again without the restriction of minimum or maximum
phase, in which a discrete-time scquence is completely specified by the
magnitude of its Fourier transform. In Section VI, we extend the results

of Sections II, III, IV and V to the case of multi-dimensional sequences

and illustrate an application of the results of this namer to hlind

deconvolnution.




[I. UNIQUENLSS OF A SEQUENCE WITH A PHASE FUNCTION SPECIFILD AT

ALL FREQUENCIES

The sequences that we consider are real with rational z-transforms.
Since we are interested in conditions under which the sequence can be
uniquely specified by the phase of its Fourier transform, the Fourier
transform is assumed to converge i.e¢., the region of conrergence of the
z-transform includes the unit circle.
For such sequences, we first show that a finite length sequence is
uniquely specified by the phase of its Fourier transform if its z- E
transform has no zeroes in reciprocal pairs or on the unit circle.1 More
specifically, denoting the phase of x[n] and y[n] by OX(wJ and

Oy(w) respectively, we demonstrate the following:

Theorem 1: Let x[n] and y[n] be two finite length sequences
whose z-transforms have no zeroes in reciprocal
pairs or on the unit circle. If Ox(w) = Oy(w)
for all w, then x[n] = Ay[n] for some positive
constant A. If tan Ox(w) = tan Oy(w) for all w,

then x[n] = Ay[n] for some real constant A.

To demonstrate the validity of Theorem 1, we note first of ali,
that if a finite-length sequence g[n] with z-transform G(z) has a phase
which is zero or 7 for all w, then g[n] is an even sequence, i.e., g[njs=

gl[-n], and consequently, if G(z) has a zero at 2=2,, then G(z) must also have

Since we are considering only sequences which are real, zeroes occur in
gomp}e; conjugate pairs. In the following discussions, this symmetry is
implicitly assumed, particularly in reference to reciprocal zeroes.
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a zero at z=l/zO. Now assume that x[n] and y|n] both satisfy the conditions

of Theorem 1 and define g[n] as

gln]=x[n]*y[-n] (N
so that G(2)=X(z2)Y(1/2) (2)
If Ox(w) = Oy(w) or if tan Ox(w) = tan Oy(w), then the phase of g[n]
is zero or 7. Therefore, g[n] is an even sequence. Since the zeroes
of G(z) are collectively the zeroes of X(z) and Y(1l/z), if X(ZO)=O i
then either X(l/zo)=0 or Y(zO)=O. However, because the conditions of
Theorem 1 exclude reciprocal zeroes or zeroes on the unit circle, X(zo) é
and X(l/zo) cannot both be zero. Thus, if X(:0)=O then Y(ZO)=0 and
vice versa, i.e., the zeroes of X(z) and Y(z) are identical. Consequently,

. . 2
since g[n] is an all zero sequence,

X{z2)=AY(2) (3)a
or x{n]=Ay[n] {3}b
Combining equations 1 and 3b, we have

g[n]=Ax[n]*x[-n] (4
Since the phase of x[n}*x[-n] is always zero, if Ox(w) = Oy(w) then the
phase of g[n] is zero so A must be a positive constant. If tan Gx(w) =
tan Oy(w) then the phase of g[n] is zero or 7 so A must be real.

An interpretation of Theorem 1 is suggested by the observation that

for a rational z-transform, in general, a zero at z=z_ and a pole at

0

*
z=1/z0 contribute the same phase but different magnitude to the Fourier

2

When we refer to a sequence as an all-zero (all-pole) sequence this
should be interpreted to mean that the z-transform has only zeroes
(poles) except possibly at 2=0 or z=e,



transtorm. Thus with phase intormation alone, there is an inherent ambigui y

in the z-transform in the sense that a zero (pole) at z-2, associated with the

original sequence can potentially only be identified from the given phase

*
as either a zero (pole) at z=z or a pole {(zero) at z=1/z  and this

“0
ambiguity cannot be further resolved without additional information or
conditions. The tinite length condition in Theorem 1 resolves this ambiguity

by restricting the z-transform to have only zeroes except possibly at z=0
or at z=». The additional condition that the z-transform have no zeroes
in reciprocal pairs eliminates the possibility of zero phase components
in the z-transform which, of course, could never be recovered from phase
information alone. The conditions in Theorem 1 also eliminate the
possibility of zeroes on the unit circle. While the Theorem can be
modified to allow for the possibility of zeroes on the unit circle, the
result becomes somewhat more complicated and we have chosen not to
include this additional generality.

Although Theorem 1 requires that x{n] be an all-zero sequence, a
dual to Theorem 1 can be formulated for an all-pole sequence. Specifically,
let x[n] denote the convolutional inverse of a sequence x{n], i.e.

x[n] * X[n] = $[n] (5)
Then:
Theorem 2: Let x[n] and y[n} be two sequences whose z-transforms
have no poles in reciprocal pairs, and which
have finite duration convolutional inverses. If Ox(w)=
Oy(w) for all w, then x{n] = Ay[n] for some positive
constant A. If tan Ox(m) = tan Oy(m) for all w, then

x[n]=Ay[n] for some real constant A.




Theorem 2 foilows directly from Theorem 1. Since the phase of the

<

Fourier transform of X|n| 1is specified by the phase of the Fourier
transform of x{n], X[n] is uniquely specified to within a positive
scale factor by the phase of the Fourier transform of x[n], by virtue
ot Theorem 1. Then, x[n] is uniquely determined from the reciprocal
of the z-transform of X[n].

In Section IV we will consider a number of numerical algorithms
which can be implemented on a digital computer for reconstructing a
sequence from its phase under the condition of Theoren 1 or Theorem 2.

At this point, however, we discuss a conceptual algorithm which may
potentially have a practical implementation but which, more importantly, serves
to lend insight into Theorem 1 and 2. We outline the algorithm under

the conditions of Theorem 1 since it is easily modified for the conditions

of Theorem 2.

Let Ox(w) denote the specified phase function from which the sequence
is to be reconstructed and 6X(m) the associated unwrapped phase (3). From
the conditions of Theorem 1, X(2z) is restricted to be of the form

n, N N

X(z)=Cz ° nt (l-akz_l) 1° (1-b, 2) (6)

k=1 k=1

*
<1, [bk{<1 for all k and a,# b, for any

with C real, n, an integer, Iak

0
k and £.

Step 1:

The algebraic sign of C is obtained from Ox(w) using the fact that
OX(O) is zero if and only if C is positive (3). The value of n0 in

eq. (60) is obtained from the unwrapped phasc as




L
o= L0 ) - 0, (0)] (7)

Step 2:

From the unwrapped phase function and the value of n, obtained in ]

Step 1, a new phase function is specified as

S N

e

P ) 20 (@) - nw - 00 (8)

Using the Hilbert transform, a minimum phasc sequence xmin[n] can be

[n]

specified which has the phase wx(w). The z-transform Xmin (z) of X nin

is given by (3,4)

N ]
mo(1-a27h
k=1 k
Xmin ("—): \12 N -l (9)
1l Ll-bk z )
k=1

where the coefficients a, and bk are identical to those in eq. (6).

Since pole-zero cancellations cannot occur in eq. (9) by virtue of the

* . v
condition in Theorem 1 which implies that ak# bt for any k or £, the coefficients a

in eq. (6) can be obtained from the zeroes of Xm'n (z) and the coefficients

1

b;, and thus bk in eq. (6),can be obtained from the poles of Xmin(z).

The condition in Theorem 1 that there are no zeroes in
reciprocal pairs ensures that there are no pole-zero cancellations in eq. |
(9). 1If the original sequence has reciprocal zeroes, then the algorithm

above may still be applied to recover all but those zeroes in X{z)

which are in reciprocal pairs.

6




LET. UNTQUENESS OF A STQUENCL WITH A PHASE FUNCTION SPECIFLED AT

DISURLIL FREQUINCIES

In Theorems 1 and ! we assumed that the phase function was specified

at all freguencies. A similar set of Theorems cun be stated if the phase

1s specified at a sufficient number of discrete frequencies. As in
Section 11 we assume the sequences are real with rational z-transforms
with a region of convergence that includes the unit circle.

Then:

Theorem 3: Let x{n] and y[n] be two finite length sequences

." .
which are zero outside the interval Ofan-l with

t-transforms which have no zeroes in reciprocal
pairs or on the unit circle. If Ox(w) = Oy(w)

at (N-1) distinct frequencies greater than zero
and less than 7 ,then x{n} = Ay{n} for some
positive constant A. If tan @x(u) = tan Uy(w)

at (N-1) distinct freguencies greater than zero
and less than 7, then x[n] = Ay[n] for v~ mc real
constant A.

The validity of Theorem 3 follows in an almost identical manner
to that of Theorem 1. Specifically, consider a finite length sequence
g[n] for which g{n]=0 outside the interval (-N+I)<n<(N-1). Let

10 (W)
Glw)=|G(w)]e & denote the Fourier transform of g[n] with Og(w)

zero or T at N-1 discrete frequencies w.,w,,.. between =0 and
&

1 ON-1

w=rT, i.e.,

3More generally, x[n] nced only bhe zero outside any finite interval
of length N. This added generality, however, is not considered in
order to simplify the following discussions.




p—

Og(mk)=0 or m for K=1,...N-1 (10)a
: or Kk .0k
with w # wp for k#d (.M
and U<mk<u for k=1,...,N-1 (10)c

Then, G(wk) 1s real and

N-1
lm[U(mk)J: ) g[n] sin nwk=0 (11)
n=-N+1
Or, equivalently
N-1
) {g[n]og[—n]} sin nwk=0 k=1,2...N-1 (12)
n=1
0<wk<ﬂ
Equation (12) implies that (5)
(gin]-g[-n]] =0 n=1,...N-1 (13)

i.e., g[n] is an even sequence. Now, consider two sequences x[n] and
y[n] satisfying the conditions of Theorem 3 and having the same phase at
(N-1) distinct frequencies between zero and m. As with Theorem 1, we
form the sequence

g[n]=x[n]*y[-n] (14)
Since g[n]=0 outside the interval (-N+l)§nf(N-1) and Og(wk) satisfies
eqs. (10), then g[n] is an even sequence. For reasons identical to
those used in justifying Theorem 1, it then follows that

x[n]=Ay[n] (15)
where A is a npo«itive constant if the phase samples of x[n] and y|n] ars
equal and a real constant if tangents of the phase samples are equal.

Although Theorem 3 requires that x{n] be an all-zero sequence, a

dual to Theorem 3 for an all-pole sequence is casily formulated in terms

of the convolutional inverse. Specifically:




| Theorem 4: Let x[n] and y[n] be two sequences whose z-transforms
i have no poles in reciprocul pairs, and which

: have convolutional inverses that are zero outside the
interval O<n<N-1. If Ox(w) = Oy(w) at (N-1) distinct

frequencies grecater than zero and less than 7 then x[n] =

ce TR AT T T

Ay[n] for some positive constant A. If tan Ox(w) =
tan Oy(w) at (N-1) distinct frequencies greater than
zero and less than m, then x[n]=Ay[n] for some real

constant A.

Lo R R T AR T e T AT

Theorem 4 follows from Theorem 3 in the same manner that Theorem 2
follows from Theorem 1.

It should be noted from Theorem 1, that if the phase is specified
at all frequencies, then the interval outside of which the sequence is

zero need not be known whereas from Theorem 3, if the phase is specified

4t N-1 frequencies then this interval must also be specified. In both
cases, except for a positive scale factor, the phase in the case of
Theorem 1 or phase samples in the case of Theorem 2 uniquely specify a
sequence within the class of sequences which have no zeroes in reciprocal

pairs or on the unit circle. However, if the additional constraint that

x{0]#0 is included in the conditions of Theorem 3, then as we now show,
the phase samples uniquely speicify a sequence within a broader class of

sequences. Specifically:

Theorem 5: Let x[n] be a sequence that is zero outside the
interval 0<n<N-1 with x[0]#0 and which has a
z-transform with no zeroes in reciprocal pairs

or on the unit circle. Let y[n] be any sequence




which 1s :zero outside the interval 0<n<N-1. If
Uy(w)=0x(w) at (N-1) distinct frequencies greater
than zero and less than n, then y[n]=Ax[n] for
some positive constant A. If tan Oy(w} = tan Ox(w)
at (N-1) distinct frequencies greater than zero and

less than 7w, then x[n]=Ay{n] for some real constant A.

To demonstrate the validity of Theorem 5, we first form the sequence
ginj=xin}*y[-n]. As discussed in Section IIl, since g[n]=0 outside

the interval (-N+1) <n< (N-1) and satisfies equation (10), g[n} is an
even secquence.  Now let Nl—l represent the location of the last non-zero

point in x[n}, i.e., x[n]=0 for n>N, and x[Nl-I]#O. Then

1
1 Nl_l N-1 -n
G(z) = X(2)Y(z™) = ¥ x[n]z”" & y[nlz (16)
n=0 n=0

Since g[n}) is even and x[0]}#0, y[n]=0 for anl so that the number of
zeroes of y[n] is less than or equal to the number of zerces of x[n].
Now, for reasons identical to those used in justifying Theorem 1, if
g[n] is an even sequence and if x[n] has no zeroes in reciprocal pairs,
then for each zero of x[n], y[n] must also have the same zero. Even
though y[n] is not restricted to the class of sequences with no zeroes
in reciprocal pairs or on the unit circle, from our previous result,
y[n] cannot have more zeroes than x[n], and therefore, y[n]=Ax[n].

For reasons identical to those used in justifying Theorem 1, A is a
positive constant if the phase samples of x[n] and y[n] are equal

whereas A is a real constant if the tangent of the phase samples are

equal.

10




Although Theorem 5 requires that the sequence be an all-zero
1 sequence, a dual to Theorem 3 for all all-pole sequence is easily

tformulated in terms of the convolutional inverse. Specifically:

Theorem 0: Let x[n] be a sequence whose z-transform has no
poles in reciprocal pairs or on the unit circle,
and whose convolutional inverse is zero outside
the interval 0<n<N-1 and non-zero at n=0. Let
yin} be any sequence whose convolutional inverse
is zero outside the interval O<n<N-1. If @y(w)=
Ox(w) at (N-1) distinct frequencies greater than

zero and less than 7, then y[n] = Ax[n] for some

positive constant A. If tan @y(m)=tan Ox(w) at
(N-1) distinct frequencies greater than zero and

less than m, then x[n]=Ay[n] for some real constant A.

Theorem 6 follows from Theorem 5 in the same manner that Theorem 2

follows from Theorem 1.

IV. UNIQUENESS OF A SEQUENCE WITH A SPECIFIED MAGNITUDE FUNCTION

In Section II, several scts or conditions are presented which
establish a uniqueness between a sequence and its phase function.
Unlike the case for minimum or maximum phase sequences, there is no

dual statement of uniqueness between a s¢quence and its magnitude

are embodied in the following Theorcms:

11

function under the same set of conditions. However, under a different
set of conditions a sequence is uniquely specified to within a sign and

a time shift by the magnitude of the Fourier transform. The conditions



Theorem 7 Let x{n} and y[nl be two scquences whose z-transtorms
contain no reciprocal pole-zero pairs and
which have all poles, not at z=»=, insidce the unit
circle and all zeroes, not at =0, outside the unit
circle. 11 the magnitudes of the Fouricer transtorms
of x[n] and y[n] arc cqual then x{n] = + v{n+m] for

some integer m.

e ——————

A dual to this Theorem is:

Theorem 8: Let x[n] and y[n] be two scquences whose z-transforms

CR e

: contain no reciprocal pole-zero pairs and

Log

which have all poles, not at z=0, outsidec the unit

circle and all zeroes, not at z==, jinsidc the unit

circle. If the magnitudes of the Fourier transforms

of x[n] and y[n] arc equal then x[n] = + y[n+m] for

some integer m.

Since the justification of Theorem 7 is almost identical to that of
Theorem 8, we will focus only on the first. The validity of Theorem 7
is suggested by noting that a zero (pole) at 2=z, and a zero (pole) at
z=1/:; contribute the same magnitude to the Fourier transform. Therefore,
with magnitude information alone, there is an inherent amhiguity in the
specification of the sequence in that a zero (pole) of the original
sequence can potentially only be identified from the magnitude as either
a zero (pole) at =1, or at z=1/z;. In Theorem 7 this ambiguity is
resolved by restricting the poles to lic inside the unit circle and the
zeroes to lie outside while in Theorem 8, the condition is the reverse.

The additional condition that there are no conjugate reciprocal pole-zero

12
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pairs eliminates the possibility of all-puass terms which contribute only
to the phuse and not the magnitude.

To more formally demonstrate Theorem 7, we define the set of
sequences Cm to consist of all sequences x[n] which satisfy the conditions

of Theorem 7 so that their z-transform are restricted to be of the form

X(z) = Cz"o (17)

I (l-b,z
k=1 k
*
with ak# bZ for any k and £, and where C is a real constant, n, is an
integer, and lak|<l, [bk[<1 for all k. Now consider two sequences
x{n] and y[n], both in the set Cm, with z-transforms X{z) and Y(z)
respectively. We wish to show that if X(z) and Y(z) both have the same

magnitude on the unit circle then x[nj=+y[n+m] for some integer m.

Consider G(z) defined as the ratio X(z)/Y(z). Since X(z) and Y(z) both
have the same magnitude on the unit circle, G(z) must be entirely all-pass

with unity magnitude, i.e., for a zero at z=:, there must be a pole at

0
*

z=l/z0 and vice versa. Therefore, G(z) consists only of poles and/or

zeroes at z=0 or at z=% and conjugate reciprocal pole-zero pairs.

Because of the conditions in Theorem 7, this in turn requires that for

any zero (or pole) of X(z) at z=z_  there must be a zero (or pole) of

0
*

Y(z) at z=l/z0 which, for z, # 0 or @, violates the conditions in

Theorem 7 since one will always be inside and the other outside the

unit circle. Thus, G(z) must be of the form

13
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G(z) = +z (18)
or, equivalently,

x[n]=+ y[n+n] (19)
for some integer m.

A conceptual algorithm similar to that considered in Section II
can be developed for reconstruction of a sequence to within an algebraic
sign and a delay from the magnitude of its Fourier transform under the
conditions of Theorem 7 or Theorem 8. We outline the procedure below
under the conditions of Theorem 7. It is easily modified for the
conditions of Theorem 8.

Let |X(w)| denote the specified magnitude function. Using the
Hilbert transform, a minimum phase sequence xmin[n] can be specified

which has the same magnitude function. The z-transform Xmin (z) of

X in [n] is given by N1 .
I (1-a,2 )
k=l K
X i (2) = [C] (20)
Pl -1
1T (l-bkz )
k=1

i.e., it has the same poles as X{(z) and the zeroes are reflected inside
the unit circle. Since the conditions of Theorem 7 exclude the
possibility of pole-zero cancellation, the coefficients a;, and thus

ay in eq. (17),can be obtained from the zeroes of Xmin(z) and the

coefficients b, in eq. (17) can be obtained from the poles of xmin(z)'

k

14
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V. NUMERICAL ALGORITHMS FOR RECONSTRUCTION FROM SAMPLES QF A

PHASE FUNCTION

In Section II, we presented two sets of conditions, embodied in
Theorems 1 and 2, under which a sequence is uniquely specified to
within a positive scale factor by the phase of its Fourier transform.

In this section, we describe two numerical algorithms which can be used

to reconstruct a sequence satisfying the requirements of Theorem 1 from
samples of its phase function when the location of the first non-zero

point of x[n] is known. Although these algorithms will only be discussed

in terms of reconstructing sequences satisfying the conditions of Theorem 1,
the reconstruction of sequences meeting the requirements of Theorem 2 may
be accomplished by simply reconstructing the finite length sequence X[n]
defined in eq. (5) using the negative of the specified phase samples and
then computing the convolutional inverse sequence.

The first algorithm presented below is an iterative technique in
which the estimate of x[n] is improved in each iteration. This algorithm
has been developed by slightly modifying an iterative technique proposed
by Quatieri (6) for reconstructing a minimum phase or maximum phase
sequence from its phase function. The second algorithm is a closed form
solution which is obtained by solving a set of linear equations. Under
the conditions specified in Theorem 1, this algorithm provides the desired
sequence x[n] to within a scale factor when the location of the first
non-zero point of x[n] is known.

In the discussions which follow, x[n] is used to denote a sequence
which satisfies the conditions of Theorem 1 and is zero outside the
interval 0<n<N-1 with x{0]J#0. In the more general case (see Footnote 3),

a linear phase term may be added to the given phase to accomplish this.

15




A. Iterative Algorithm

The M-point discrete Fourier transform (DFT) of x[n] will be denoted

x(k) = [x(k)]ed %™ (21)

where it .s assumed that M>2N. Then, an iterative technique to reconstruct

the sequence x[n] from the M samples of its phase, Ox(k) k=0,1,...,M-1, is

G

as follows:

Step 1:

We begin with |X°(k)|, an initial guess of the unknown DFT magnitude
and form the first estimate, Xl(k)’ of X(k) using the specified phase
function, 1i.e.,

X (0 =[x (ke %) (22)
Computing the inverse DFT of X](k) provides the first estimate, xl[n],
of x[n}. Since an M-point DFT is used, xl[n] is an M-point sequence

which is, in general, non-zero for N<n<M-1.

Step 2:

From Xl[“]’ another sequence, yI[n], is defined by 3

_\x,[n] 0<n<N-1
anfM-l =

16




Step 3:

The magnitude [Yl(k)[ of the M-point DFT of y, (n] is then considered

as a new estimate of |X(k)| and a new estimate of X(k) is formed by

i0, (k)

X,(k) = ]Yl(k)le (24)

From this, a new estimate xz[nj is obtained from the inverse DFT of
Xz(k). Repetitive application of steps two and three defines the
iteration.

In this iterative procedure, the total squared error between x[n]
and its estimate is non-increasing with each iteration. To see this,
let xr[n] denote the estimate after the rth iteration and define the

error, Er’ as

[}[n]—xr[n]] (25)

From Parsevals's theorem,

EooL o3 X (K)-|X (k)]ejex“”l2
Tr M k=0 r
M-1 . 2
= % z ]X(k)-]Y*Nl(k)]eJGX(k)[ (26)
k=0 :

Since Ox(k) is the phase of X(k), then

. 2 2
xaa-1v,_ 1% <ixao-y o) (27)

with equality if and only if Ox(k)=er—1(k) where Or-l(k) is the phase

17




ot Yr_lnk). gombining eq. (26) and (27) gives

| Ml 2
o< L XK -Y (K]
r - M k=0 r-1

or, with Parseval's theorem:

M-1 2
. . N 5
b L [xm >r-1l"1] (28)
Since
yr_l[n] = xr_lln] for 0 <n <N-1
yl_l[n] = x[n}=0 for N <n <M-1
then,
2
M-1 - M-1 2
zZ x[n]-yr~1[n] < I x[n]—xr_l[n] = Er-l (29)
n=0 n=0

with equality if and only if yr_l[n] = X 1[n]o Therefore,

E < E. (30)

Although eq. (30) is not sufricient to guarantee the existence
A A

of a converging solution, if x|{n] is a converging solution then x[n]=

Ax[n] with A > 0. To show this, we note that the equality in equation (30)

holds it and only if Ov_](k)=OY[k) from equation (27) and if and only if

| Yr_][n]=xr_1[n| from cquation (29). Therefore, if the algorithm converges, then




the convergent solution x[n] is zero outside the interval 0<n<N-1 and

2n . ..
has the same phase samples as x{n] at w = i k for k=0,1,...,M-1. Since

T T

M>2N, there exist at least N-1 distinct values of w in the interval

.

O<w<n at which Ox(u) equals Og(w). Then from Theorem 5, ;[n]=Ax[n] for
some positive constant A.

It is not yet known if this iterative procedure always leads to a
converging solution. tHowever, in all the examples that we have considered
so far, we have empirically observed that the algorithm converges to the
correct solution when M>2N and that the number of iterations required to
achieve a small total squared error is, in general, quite large. We have
also observed that increasing M may increase the rate of convergence of
the algorithm, but such an increase obviously results in an increase in
the number of computations required for each iteration.

Two examples of the iterative procedure applied to a mixed phase
sequence, x[n], of length 8 are shown in Table 1. In the first example
an FFT of length 16 was used. In the second example, the FFT length was
extended to 128 points. In both cases, the initial guess of the unknown
magnitude was chosen to be a constant, and the scaling factor A was
chosen so that the resulting sequences have the same value at the origin
as x[nj. The results after 10, 100, 500, and 1000 iterations are presented

along with the values of the total squared error.

B. Closed Form Solution
4
A closed form solution for reconstructing a sequence x[n] from

samples of its phase, Ox(w), follows from the definition of Ox(w). With

Ox(m) defined so that -m< Gx(w) < 1, we have

4A closed form solution similar to the one presented in this section
can be obtained by expressing the real and imaginary parts of X(w) in

terms of the given phase and then relating the real and imaginary
parts through the discrete Hilbert transform relations for causal scquences.

19




R T

0°9- 0°st 0°s o'y 0°S 011~ 02 o'y FINANDIS TYNIDIYHO
-01-81T'W 0009~  000°St 000°S 000" v 000°S 000° 1T~ 000°7 000"t 0007
¢ £-01°601°6 v86°G- £00°ST 610°'S €10°V L66° Y 166°01- 9661 000°Y 00S
821
6271 . TIPSt P01 ST £2L°S 6St" v 206 ¥ 1£9°01- 5681 000't 001
L1119 our v- 2. 987751 £95°9 S10°S SL8° Stz 01~ (v9°1 000"t (11¢
<
o
,-01°26L°9 196°§- 106"+ T 6S1°S SL0°t 6v8° 1 LY6°0T- 210°2 000° Y 0001
1-01-526°8 vS8°§- v9 vl LLS°S Tt sty v08°01- ov0°Z 000"y 00S
91
0S0°¢ 6.8°S- ITARR A 6.9°9 SR § SI9°¢ S§E01- 72072 000V 001
196° 11 196" ¢- 988°€1 St ¢ RN 166 58676~ 268°1 000" ¥ ot
youyd [c1x fo]x [s]x (v1x [elx {z1x [1}x folx SNOTLVYALI HLONTT
avnds TvioL 40 YIGWAN 144

aseyq Sl Woxj aduanbag e 30 UOTIIUIISUOIIY IATIBIIL]
T 314vVL




N-1

-2 x{n)sin nw
tan UXLw) = ”P:U 7 (31)
N-1
L x[njcos nw ;
n={

For the case in which O‘(w)=tﬂ/2 so that tan Ox(w)sz’ eq. (31) is

equivalent to:

. iiT' k] "

N-1
I Xx[nj cos nw = 0 (32) 4
n=0

Sampling tan Ox(m) at N-1 distinct frequencies Wy, Wy, with

Coaly g
0 < Wy <7 for k=1,2,...,N-1, eq. (31) and (32) can be written as:

E:i x[n] [%os nw,  tan Ox(wk) + sin nwk] (33)a
= -x[0] tan O (w ) if ox(wk);ef_g_
1
N-1 -
i:l x{n] cos nw, = -x[0] if Gx(wk)=t?r (33)b ;

for k=1,2,...N-1. Equation (33) represents (N-1) linear equations

in the (N-1) unknowns of x[n] ard can be expressed in matrix form as; ‘{

S x = x[0]b (34)

where x represents the vector of elements of x[n] excluding the first

element of the sequence, x[0]. Any solution s{n], to eq. (34) has the

property that s[n] is cero outside the interval 0<n<N-1 and has the same




N g Sade

tangent of the phase as x[n] for N-1 distinct frequencies between zero {
and 1. Thus, from Theorem 5, we conclude that ¢[n]=Ax[n] for some

real constant A.  Therefore, there is only one independent solution to

eq. [34). This implies that S_l, the inverse of the matrix S, exists

PRI PSR TR S

and that x|n} is given by

x = as7hy (35)

for some real constant A. To specify x[n} to within a positive scale
factor, we first assume that A>0 and determine the phase of x in eq. (35).

If the resulting phase does not differ from Ox(w), then A is positive. i

Otherwise, A is negative.

In reconstructing x{n] from Ox(w) using eq. (35), it should be
noted that we have some control over the matrix S. Since the elements
of the matrix S are functions of the samples of Gx(w), S can be changed
by choosing a difterent set of frequency samples. This control over S
may be useful in avoiding those frequency samples for which tan Ox(w) is

very large or in avoiding potential numerical instabilities in computing

the inverse matrix S 1. é
Compared with the iterative algorithm, the closed form solution
presented above has the advantage that the desired sequence is guaranteed

to be the solution to eq. (34) and, in addition, no iterations are
required in order to reach a solution. On the other hand, equation
(34) requires computing the inverse of an (N-1)x(N-1) matrix which may
lead to numerical problems and severe round-off errors, particularly as
{ N becomes large. i

The algorithm discussed above has been applied to a variety of

different ecxamples. Consistent with our theoretical results, in all

)
“

[ o1
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examples we have considered, the desired solutions have been obtained.
Specifically, for the sequence shown in Table 1, the closed form solution
was used to reconstruct the sequence from its phase. The phase samples
used to define the matrix S were first chosen to be equally spaced
between zero and m, and then were randomly selected within the interval
zero to W. Within the limits of finite precision arithmetic, in beth
cases the sequence was reconstructed exactly when the scaling factor was
chosen so that the solutions obtained had the correct value at the

origin.

VI. EXTENSION TO MULTI-DIMENSIONAL SEQUENCES

In this section, we extend the vesults of Sections 1I, III, IV and
\' to the case of multi-dimensional sequences, This extension is achieved
by mapping a multi-dimensional sequence into a 1-D (one dimensional)
sequence and then applying the results for 1-D sequences. Since the
extension of the 2-D case to sequences of higher dimension is straight-
forward, our discussions in the section will concentrate on the 2-D
case. Again, we consider only sequences which are real, have rational z-
transforms, and have Fourier transforms that converge,
Let x[nl,nz] represent a 2-D sequence which has a rational z-
transform with X(wl,wz) given by
A(wl,wz)
X(wl,wz) = (36)
B(wl,wz)

where A(wl,wz) is a 2-D polynomial of degree M, in exp[jml] and M2 in

1
exp[jw,] and where B(wl,wz) is a 2-D polynomial of degree N1 in exp[jwl]

and N2 in exp[jw Suppose we form a 1-D sequence xl[n] or xz[n] by

2]'

~

xl[n] =T x[m,n-Nm] (37)a

m= o0
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or X,|n) = & x}n-Mm,mj (37)b

m= -0

where M2 max(Nl,Mlj and N > max(M,,N,). Then it can be shown (7,8)

that the transformation in equation (37) 1is invertible and that

Xl(u) = X(ml,wz) i (38)a
w1=wN, W,=W

and Xz(w) = X(wl,wz) (38)b

w1=w, w2=aw

From equation (38), it is clear that the phase of ;l[n] or ;Z[n] is
specified by the phase of x[nl,nz] and the magnitude of ;l[n] or ;z[n]
is specified by the magnitude of x[nl,nz]. Therefore, all the theorems
and numerical algorithms developed in Secitons I1, I1I, IV and V for 1-D
scquences may be extended to 2-D sequences by first transforming them
into 1-D sequences using equation (37) and then applying the 1-D results
to the resulting 1-D sequences. Thus, for example, Theorem 1 may be

2] be two

extended to 2-D sequences as follows: Let x[nl,nz] and y[nl,n
2-D sequences such that the two 1-D sequences x[n] and y[n] obtained

from transforming x[nl,nz] and y[nl,nz] using equation (37) are finite
in length and have no zeroes in reciprocal pairs or on the unit circle.

If Ux(ul,wz) = Oy(ml,wz) for all W, and Wy then x[nl,n2]=Ay[nl,n2] for

some positive constant A. If tan Ox(wl,wz) = tan Oy(wl,wz) for all
W, and Wy then x[nl,n2]=Ay[n1,n2] for some real constant A.

If x[nl,n7j is a 2-D sequence with finite support, then the transformation
given by equation (37) can be reduced to a simpler form. Specifically,

let x[nl,n be zero outside the region 0<n <N -1 and 0<n,<N,-1. Then

2] 1-71 2

equation (37) can be rewritten as




— ~ e

N

x1[n1N+n,] = x[nl,n,J with N>N (39)a

1

~

or x3[n1+n2MJ = x[nl,nzj with M>N (39)b

2
Clearly, the transformation in equation (39) is invertible and it can be
edasily shown (8) that Xl(m) and Xz(w) are given by equation (38).

As an illustration of the results of this section, a 2-D sequence

representing the intensity of an image, x[nl,nz], was created which is

zero outside the region 0<n,<1l and 0<n,<l1. From the phase of Xl(w)

1 2

defined by equation (38)a with N=12, the closed form solution was used
to reconstruct x[nl,nz]. With the scale factor chosen so that the
reconstructed image had the same value at the origin as x[nl,nz], the
result, shown in Figure 1, is indistinguishable from the original. For
illustration, the image shown has been enlarged by means of a zero-order
hold.

Finally, we present another example which illustrates a potential
application of the results of this paper to blind deconvolution. In
imige processing, a model which frequently arises to describe image blur

in the absence of noise is:
yln;»n,] = x{n;,n,] * hin ,n,] (40)

where x[nl,nz] is the original unblurred image and h[nl,nz] is a (real)
symmetric 2-D sequence, i.e., h[nl,nz] = h[—n1,~n2]. This model may be
used, under the appropriate band-limited assumptions, to account for
uniform motion blur, severely defocussed lenses with circular aperature
stops, and long-term exposure of atmospheric turbulence [9]. In the
context of blind deconvolution, the desired objective is to recover

x[nl,nzl in eq. (40) from the blurred image y[nl,nz] with no detailed

25
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knowledge of h[nl,nzl. However, if h[nl,nzl is known to be symmetric,
one possible approach to the deconvolution of e¢q. (40) is suggested by
the results of this section and section V. Specifically, let x[nl,nz]
denote an original unblurred image and h[nl,nll a4 symmetric point spead

function. With y[nl,n,] representing the blurred image as cxpressed by

equation (40), define the coordinate system for y[nl,nzj in such a way

that y[nl,nzj is zero outside the region Utnlixl-l and Dfnszz—l. Since
h[nl,n,] is symmetric, its phase is zero or © for all W and W,
Therefore,

tan Qy(wl,wz) = tan Ux(wl,wzj (41)

~ A

for all wy and W, Suppose there exists a sequence xlln] or len]
defined by equation (39) which satisfies the conditions of Theorem 3
and that the location of the first non-zero point of this sequence is
known. To simplify the following discussion, we denote this sequence
simply by ;[n] and define the sequences ;[n]and ;[n] by performing the
same transformation on y[nl,nz] and h[nl,nz] that is used to obtain

x[n]. From the results of (8),

~ ~

y[n] = x(n] * hin) (42)

and therefore, it follows from equations (38) and (41) that

tan Oy(w) = tan Og (w) (43)

~

for all w. Since the location of the first non-zero point of x[n] is

assumed to be known, by adding the appropriate linear phasec to Oi(w),

26




Fig.l. Image reconstruction from phase information.




Fig.1. Image reconstruction from phase information.
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the corresponding sequence, x[n], satisfies the conditions of Theorem 5,

i.e., x[n] satisfies the conditions of Theorem 3 with X[0]#0. Consequently,
the closed form solution given by equation (35) specifies X{n] to

within a scale factor from samples of its phase or, equivalently, from
samples of the phase of y[nl,nzj. Therefore, since equation (39 represents

an invertible transformation, x[nl,nzj can be recovered from X[n] and

knowledge of the location of the first non-zero point of x[n].

Since it is unreasonable to assume that the location of the first
non-zero point of ;[n] is always known, we outline one possible precedure
for finding this point from ;[n] which is given by equation (42).
Specifically, with ;[n] equal to zero outside the interval 0<n<N-1,
suppose we assume that ;[0]#0 and proceed to solve equation (34) for the

vector x using (N-1) samples of @?(w). Then, it is easy to show that
the (N-1) x (N-1) matrix S in equation (34) is singular if x[0]#0.

More importantly, however, it can be shown that ngs the location of the

first non-zero point of x[n], is related to the rank of S by:
n = (N-1) - rank[S] (44)

Therefore, suppose we are given the 2-D sequence y[nl,nz] in equation

(40) with y[nl,nz] taken to be zero outside the region Ofnlle and

~ A~ i

Ofnzfnz—l. Then, if xl[n] or x2[n] satisfy the conditions of Theorem 3,

equation (44) may be used to determine the location of the first non-
zero point of xl[n] or xz[n]. With this information, equation (34) may

be solved to recover xl[n] or xz[n] to within a scale factor from Gy(wl,wz).

Then, performing the inverse of the transformation given by equation .

(39), x[nl,nzj can be reconstructed to within a scale factor.




An example which illustrates the results of this section to blind
deconvolution is shown in Figure 2. The image in Figure 2a has a
support of 1o pels x 10 pels which, for illustration, has been enlarged
using a zero-order hold and represents the original image, x[nl,nzl R
which has been blurred by a symmetrical 2-D sequence h[nl,nzj as in

eq. (40). After determining the support of h[nl,n from the blurred

51
image using a variation of the procedure outlined above for determining
the location of the first uon-zero point of ;l[n] or ;2[n], the image
shown in Figure 2b was obtained from the closed form solution. Within
the finite precision of digital computation, the reconstruction is exact.
Although the iterative technique may also be used in blind deconvolution,
it has an important limitation as compared to the closed form solution.
Specifically, the iterative algorithm requires that the phase of the
blurred image be identical to the phose of the original image as opposed
to the tangents of the phase being equal as required in the case of the
closed form solution. This, in turn, restricts the blurring function
h[nl,nzj, to be zero phase.
Although we have presented one possible approach to blind deconvolution
when the degrading function is symmetric, it does not constitute a
general solution to the problem of blind deconvolution since, in practice,
eq. (40) is only an approximation. More generally, a blurred image is

given by

Y[nlinzl = x[nl’nz] * h[nl’nz] w[nl’nzl + V[nl’nzl (46)

where v[nl,nz] is additive noise and w[nl,nz] is a window function. The
sensitivity of our proposed deconvolution technique to the approximation
in eq. (40) as well as possible extensions to the more general case in

eq. (46) arc currently under investigation.
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